
Design of S-shaped diffusers in 
incompressible flow 

J. L. Sproston* 

The hodograph method, in conjunction with a numerical form of the Schwarz- 
Christoffel transformation, is applied to the determination of the shape of an 
S-shaped diffuser subject to certain prescribed characteristics in incompressible 
flow. It is shown how the resulting diffuser of infinite length can be modified to 
one of finite length by limiting the upstream and downstream velocities to within 
a small percentage of their normal asymptotic values 
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The hodograph method of solving problems of two- 
dimensional, irrotational flows was first used as long 
ago as 1868 when Helmholtz I investigated aerofoil 
flows with cavitation. A more recent successful 
application of the method by Cheers 2 has been to 
the design of contractions for wind tunnels where 
the control of velocity gradients, adverse to the 
development of the boundary layer, was of prime 
concern. Until very recently, solutions that have been 
obtained by the hodograph method have been 
limited to situations where the flow in the hodograph 
plane could easily be transformed back to the phy- 
sical plane, a process necessary to establish the (1-1) 
correspondence. For example, there have been 
numerous solutions to problems in which the result- 
ing flows in the logarithmic hodograph plane were 
confined to polygons of 3 or 4 sides. In these cases, 
analytical solutions, often using the Schwarz- 
Christoffel transformation, could be generated in 
terms of either elementary functions or, at worst, in 
terms of elliptic functions. Of particular interest here 
is an investigation by Goldstein a who indicated how 
certain types of profile for contracting ducts could 
result in infinite velocity gradients. Later, Gibbings 
and Dixon 4 showed that the contraction profile could 
also possess points of infinite curvature. 

The hodograph method has been applied suc- 
cessfully by Gibbings and Sproston 5 and Sproston 6 
to the design of aerofoil profiles in which pre- 
specification of desirable characteristics such as 
velocity distributions, pressure gradients, radii of 
curvature have been effected. The present applica- 
tion has been stimulated by the apparent lack of 
research into the design of more complicated duct 
shapes, and by the development 7 of a generalized 
numerical form of the Schwarz-Christoffel transfor- 
mation. 

The S-shaped diffuser became of interest 
mainly because of its use in aircraft air intakes. The 
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incorporation of bypass cavities into the outer wall 
of the diffuser was considered by Gerhold 8 as a 
possible way of reducing or eliminating the risk of 
damage by ingestion of foreign objects. Because of 
its higher inertia, incoming debris would usually 
impinge on the outer wall of the diffuser and a 
suitably placed cavity could act as a collector. It 
appeared initially, therefore, that the diffuser shape, 
without the cavity, should be shown to be derivable 
from a specification of characteristics which would 
be of particular significance to the later ingestion 
problem. 

The present analysis is restricted to irrota- 
tional, incompressible flow in two-dimensions, but 
it is important to appreciate that an extension to 
compressible flow would be facilitated by the 
linearity of the resulting equations in the hodograph 
plane. 

Analysis 
For two-dimensional, incompressible irrotational 
flow, it is well known that the complex potential is 
given by W = & + i~0. Differentiation with respect to 
the physical (or diffuser) plane co-ordinate, z, gives: 

dW -40 
dz =qe (1) 

and hence the logarithmic hodograph plane variable: 

f~ = In (dW/dz )  = In q - iO (2) 

Thus, the diffuser profile in the z-plane (along 
which dO = 0) will have co-ordinates which satisfy 
the equations: 

cos~ d e  and I d y = I s i n O d &  (3) 

Effectively, therefore, the problem has been 
reduced to the determination of the velocity potential 
distribution in the ll-plane, together with the point- 
to-point correspondence between the z- and [l- 
planes. 

As a particular example, it was decided to 
determine the S-shaped diffuser profile (Fig l(a)) 
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Fig 1 (a) The diffuser plane (b) The logarithmic 
hodograph plane (c) The auxiliary half-plane 

which would correspond with the following pre- 
scribed characteristics: 

(i) ql = 1 (ii) q~ = q3 = 0.81 
(iii) q4 = q5 = 0.66 (iv) q6 = 0.635 
(v) 03,4=-13.75 ° (vi) 0s,o=-34 ° 

(vii) qv = qs = 1.03 (viii) q9 = qlo = 0.486 
where the subscripts refer to numbered points. 

In addition, the diffuser boundary is to be 
designed to consist of straight portions along (1-2), 
(3-4), (5-6), (1-7), (8-9) and (10-6) and the portions 
(2-3), (4-5), (7-8) and (9-10) are to be of constant 
velocity magnitude. 

The corresponding O-plane of Fig l(b) con- 
sists of a 10-sided polygon whose sides are parallel 

to one or the other of the co-ordinate axes. (The points 
marked a, b etc. are for future reference.) 

The determination of ~b as a function of I~ is 
effected by transforming the interior of the f~-plane 
of Fig l(b) onto the upper half of an auxiliary t-plane 
of Fig l(c) so that the boundary of the O-plane maps 
onto the real axis in the t-plane. The transformation 
is carried out by using a numerical form of the 
Schwarz-Christoffel Eq (7) developed so that poly- 
gons of many sides can be rapidly accommodated. 

For convenience the sides of the polygon in 
the l)-plane as seen in Fig. l(b) are sub-divided into 
shorter sides to produce a 22-sided polygon; thus, 
when the transformation is established the point-to- 
point correspondence is found automatically for 22 
points. 

Considering the flow in the t-plane, it can be 
seen that it is due to a source at point 1 and a sink 
at point 6. Hence, taking unit strengths, the complex 
potential can be written as: 

W = In (t - tl) - In (t - t6) (4) 

and the velocity potential as: 

I t - t l  
= In I (5) 

where t~ and ts are real. 
Effectively, therefore, as (~ is now known as 

a function of t, and t is known (via the Schwarz- 
Christoffel transformation) as a function of f~, it 
follows from Eq (3) that the x, {/-co-ordinates can be 
determined. However, although the shapes of the 
upper and lower boundaries can be separately deter- 
mined, further analysis is required for the determina- 
tion of their respective positions. This is achieved 
by determining the z-co-ordinates of two points, one 
on the upper surface and one on the lower surface, 
and which are on the same equi-potential line (i.e. 
a ~b-line). Along such a ~b-line it can be seen from Eq 
(1) that it is possible to express the x- and g-co- 
ordinates, respectively, as: 

dx = - sin____00 d~O and dg = cos O d~O (6) 
q q 

If the ~b-line which passes through point 3 in the 
O-plane (and hence on the upper surface of the 
diffuser) meets the boundary corresponding to the 
lower surface at point R in the l~-plane, then integra- 
tion of Eq (6) will yield (x3-xa) and (y3-ya) .  This 

Notation 
b 
e 

G 
K 
L 
P 
q 
r 

$ 

Polar angle in t-plane 
Length of diffuser between points H and 
2 (Fig 2) 
Constant used in Eq (9) 
Complex scaling constant 
Overall length of (finite) diffuser 
Real part of function t 
Velocity magnitude 
Polar distance in t-plane 
Imaginary part of function t 

t Complex variable in half plane 
W Complex potential (W = ~b + i¢) 
z (= x + iy) Diffuser plane variable 
i ,  ~ Dimensionless co-ordinates of diffuser 

(~ = (x +e) /L ,  # = y /L)  
Greek characters 
O Local flow direction (Fig l(a)) 
fl (= In q - iO) Logarithmic hodograph 

plane variable 
~b Velocity potential 
~h Stream function 
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integration can be executed when the position of 
point R is known in the t-plane and when the right- 
hand sides of Eq (6) can be expressed as functions 
of t. 

Denoting the value of ~ a tpoin t  3 as ~b3, then 
it follows from Eq (5) that e ' ~ 3 = l ( t - t l ) / ( t - t 6 )  I. 
Hence, the locus of ~b = ¢3 in the t-plane is given by 
e~3=l[ (p- t l )2+s~] / [ (p- t6)2+s2] l r /~  where t =  
p +is. After a little algebraic manipulation this 
becomes: 

s2(1 - e 26~) = 2p ( tl - ea~'~t6) + e2*3t~ - t~ 
_pe( l_eg ,~)  (7) 

Thus, the s-value can be determined for a given 
p-value along ¢ = ~b3 and in particular the p-value of 
point R is found by putting s = 0 and solving the 
resulting quadratic equation. 

To express the right-hand sides of Eq (6) as 
functions of t along ~b = ~ 3 ,  it is convenient to apply 
the Schwarz-Christoffel transformation to the poly- 
gon in the l'l-plane of Fig l(b) without the intermedi- 
ate alpha numeric vertices. When the t-value of point 
7 (t7) is taken conveniently as -oo, the transformation 
between the l-l- and t-planes can be expressed by: 

K( ( t -  ta ) ( t -  t4) i) 1/2 
dfld_T = (t - t2)(t - ts)(t - ts)(t - tg)(t - tlo (8) 

where K is a sealing constant. 
Expressing each of the bracketed terms in the 

polar form ( t - t x ) = r = e  ~b', where r ~ = s 2 + ( p - p = )  ~ 
and b, = arctan ( s / (p  -p , ) ) ,  it follows that: 

I d f l = K I O l / 2 e ' C d t  

where 

Q = r3r4/r2rsrsrgrm 

and 

G = ( b a + b 4 - b g . - b s - b s - b g - b m ) / 2 .  

Also, as dfl  = d q / q  - i d0, therefore: 

d q = K  I Q1/~(cos G d p  - s i n  G ds) (9) 

and 

- I  dO=KI  O'/2(c°sGds+sinGdp) 

Application of the numerical algorithm v pro- 
duces the t-values in Eq (8) and, hence, for a given 
point along ¢ = ~b3 in the t-plane, Eq (9) will give 
the corresponding values of q and 0. This informa- 
tion, together with the ~b-distribution (along ¢ = &a) 
given from Eq (4) in the form ¢ = 
arg ( t - t l ) - a r g  ( t - t6) ,  creates the necessary t-func- 
tions for the right-hand sides of Eq (6). 

Results 

After application of the Schwarz-Christoffel trans- 
formation to the fl-plane of Fig 1, the results shown 
in Table 1 were obtained. It is noteworthy that, in 
using this transformation, there is a free choice of 

Table 1 

Point cos O/q -s inO/q t ¢ 

Uppersufface (~ = ~) 
1 1 0 40.9535 -oo 
2 1.2345 0 1.5746 3,3489 
2a 1.2295 0.1110 1.1619 3,7137 
2b 1.9946 0.2210 0.5633 4.6881 
3 1.1991 0.2934 0.2975 5.9499 
3a 1.3121 0,3211 0.2111 7,6420 
4 1.4784 0.3618 0,1939 9.7610 
4a 1.4974 0.2725 0,1921 11.2133 
4b 1.5159 0.1368 0.1916 13.6111 
5 1,5220 0 0.19156 15.2204 
6 1.5968 0 0.19155 

LowersuHace (¢ =0) 
1 1 0 40.9535 -oo 
7 0.9704 0 -oo 0 
7a 0.9595 0.1450 -1  3.5613 
7b 0.9271 0.2867 0 5.3650 
7c 0.8738 0.4221 0.1185 6.3261 
8 0.8010 0.5480 0.1370 6.6177 
8a 1.1480 0.7850 0,1773 7.9591 
9 1.6982 1.1618 0.1879 9.3208 
9a 1,8527 0.8960 0.1886 9.5337 
9b 1.9657 0.6080 0.1901 10,2439 
9c 2,0345 0.3075 0.1909 11.0463 
10 2.0570 0 0,1912 11.6653 
6 1.5698 0 0,19155 oo 

t-values corresponding to three vertices in the poly- 
gon plane and in this case the t-values were chosen 
for points 7, 7a and 7b. 

The p-values for points R and 3 were found 
to be 0.085 and 0.2975, respectively (which inciden- 
tally means that point R lies between points 7b and 
7c in the l'l-plane of Fig 1). Together with other 
arbitrary points in between R and 3 (B, C etc.) whose 
co-ordinates (p, s) had been computed from Eq (7), 
Eq  (9) was integrated numerically and the (q, 0) 
values along the curve joining points 3 and R, 
together with the corresponding values of ¢, are 
given in Table 2. Also, numerical integration of Eq 
(6) gave the spacings (x3-xa) and (y3-ga)  as -0.993 
and 3.374, respectively. Finally, numerical integra- 
tion of Eq (3) between points 7b and R gives ( x a -  XTb) 
and (gn--YTb) as 0.535 and -0.186, respectively. 
Sufficient information is now available not only to 
determine the shapes of the upper and lower boun- 
daries of the diffuser, but also their respective posi- 
tions. 

As the resulting profile is of infinite length 
and the upstream and downstream velocities are 
asymptotically approached, it is clearly desirable to 
investigate the case in which a finite length can be 
attained. Referring to Fig 1, numerical integration 
of Eq (8) is carried out along the straight portions 
(1, 2), (1, 7), (5, 6) and (10, 6) to find the t-values of 
points at which the velocities q (given by e a from 
Eq (2) with O = 0) are within 0.5% of their respective 
asymptotic values. Subsequent integration of Eq (3), 
using Eq (5) for ~b, gives the corresponding x-co- 
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Table 2 

Point In q q 80 cos 8/q sin 8/q 0 

R 0.280 1.0284 -21.2682 0.9061 -0.3527 0 
B -0.0139 0.9862 -20.9186 0.9471 -0 .3620 0.3045 
C -0 .0310 0.9689 -20.6494 0.9658 -0.3639 0.4426 
D -0 .0650 0.9370 -19.2227 1,0077 -0.3513 0.6962 
E -0.1109 0.8950 -17.7502 1.0641 -0 .3406 1.1666 
F -0 .1456 0.8645 -16.1688 1.1109 -0.3221 1.6544 
G -0.1727 0.8419 -14.6448 1.1492 -0.3003 2.1523 
3 -0.2100 0,8106 -13.7510 1.1983 -0.2932 3.14149 
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Fig 2 Dimensionless plot of  the finite length diffuser 
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Fig 3 The velocit~¢ distribution on the upper and 
lower boundaries of the diffuser. ©, refers to the 
upper surface; F1, refers to the lower surface 

ordinates of these points (H, I, J, K in Fig 2). Numeri- 
cal values of the (x, p) co-ordinates of the diffuser 
boundaries (with the origin for both taken at point 
2) together with the dimensionless co-ordinates 
(£, 0) are shown in Table 3. Here, ~ and 0 are 
defined as £=(x+e) /L  and # = W L  where e is the 
distance between points H and 2, and L is the axial 
distance between points H and I. The dimensionless 
plot of the finite diffuser is shown in Fig 2 and the 
corresponding velocity distribution in Fig 3. 

The velocity distribution illustrates some 
interesting features, first described by Gibbings and 
Dixon 4, at points on the diffuser walls corresponding 
to stagnation points in the flow in the ll-plane. At 
these points, the velocity gradients are infinite in 
value, and at the points 2,5 on the upper surface and 
points 8,9 on the lower surface, the gradients are 
adverse. In the real flow situation, of course, these 
gradients could cause boundary layer separation, and 
would represent, therefore, an undesirable feature 
of this particular example. 

Table 3 

x- ( - v ) -  
Point co-ord co-ord ,£ - £  q 

Upper surface 
H -2 .60 0 0 0 0.996 
2 0 0 0.129 0 0.81 
2a 0.449 0.020 0.152 0.001 0.81 
2b 1.640 0.182 0.211 0.009 0.81 
3 3.163 0.506 0.287 0.025 0.81 
3a 5.287 1.026 0.392 0.051 0.72 
4 8.244 1.750 0.539 0.087 0.66 
4a 10.405 2.210 0.647 0.110 0.66 
4b 14.017 2.701 0.827 0.134 0.66 
5 16.442 2.811 0.947 0.140 0.66 
I 17.502 2.811 1.000 0.140 0.64 

L o wer surface 
J -2.60 3.047 0 0.151 1.004 
7 -1.517 3.047 0.054 0.151 1.03 
7a 1.919 3.305 0.225 0.164 1.03 
7b 3.621 3.694 0.309 0.184 1.03 
7c 4.486 4.035 0.352 0.201 1.03 
8 4.731 4.176 0.365 0.208 1.03 
8a 6.038 5.071 0.430 0.252 0.72 
9 7.975 6.396 0.526 0.318 0.486 
9a 8.353 6.615 0.545 0.329 0.486 
9b 9.709 7.148 0.612 0.356 0.486 
9c 11.314 7.516 0.692 0.374 0.486 
10 12.581 7.611 0.755 0.379 0.486 
K 17.502 7.611 1.000 0.379 0.631 

Conclusions 

It has been shown, using a numerical form of the 
Schwarz-Christoffel transformation, how the design 
of an S-shaped diffuser can be effected. The relatively 
simple rectilinear shape in the logarithmic hodo- 
graph plane facilitated pre-specification of constant 
velocity and constant angled portions for the 
diffuser. The very nature of the numerical form of 
the transformation equally allows virtually any other 
shape in the l~-plane to be handled, because the 
program run-time on a CDC 7600 for the present 
case was <3 s. Curved boundaries in the f~-plane 
present no problem because they are simply rep- 
resented by a succession of small rectilinear seg- 
ments. In this respect, the desirable 'rounding-off' 
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of these points in the l~-plane which gave rise to 
infinite adverse velocity gradients could be 
accommodated. 

Because of the singularity representation in 
the 12-plane of the upstream and downstream condi- 
tions in the z-plane, the diffuser, consequently, will 
be of (doubly) infinite length. The necessary shorten- 
ing has been shown to be easily accomplished in a 
way in which the upstream and downstream 
velocities are specified to be within a small percen- 
tage of their asymptotic values. 

Although the present analysis is limited to 
incompressible flows, it is envisaged that a later 
investigation will extend the method to compressible 
flows, made possible by the linearity of the flow 
equations in the l'l-plane. The subsequent  conformal 
transformation will, of course, change the form of 
the equation, but  that might be more than com- 
pensated for in easy specification of boundary condi- 
tions in the t-plane. 

S-shaped diffuser design 
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BOOK REVOEW$ 
Two-phase Flow Dynamics 
Edited by A. E. Bergles and S. Ishigai 
This book contains twenty-six papers presented at a 
Japanese-US Seminar on two-phase dynamics held 
in Kobe, Japan on 31 July-3 August 1979. The papers 
can be categorised into: surveys, flow regimes, 
transient analysis, pressure wave propagation, flow 
instability, choking flow, and loss-of-coolant 
accidents (LOCAs) in light-water reactors and 
liquid-metal-coolant fast breeder reactors. The 
majority of the work reported has evidently been 
undertaken to obtain improved understanding of 
reactor LOCAs although much of the material is 
relevant to other situations in the power and process 
industries. 

Participation in the meeting was by invitation: 
sixteen of the papers are from Japan, the remainder 
from the USA. The editors express the hope in the 
preface that the book will be a worthy sequel to the 
"Proceedings of the Symposium on Two-phase Flow 
Dynamics" held at Eindhoven in 1967. International 
participation has been severely restricted in this case; 
nevertheless the breadth and depth of the work 
reported is impressive. A significant number of 
leading US research workers in the field participated: 
Bergles, Weisman, Jones, Lahey, Bankoff and Henry 
contribute papers on those topics for which they are 
internationally recognised. There are some useful 
review articles among the US presentations. 

Most of the work reported by the US par- 
ticipants is readily available and known to engineers 
and research workers in this field. Perhaps the major 
value of this book lies in the Japanese papers which 
report work less well known, even to those who read 

Heat Transfer-Japanese Research and other 
Japanese sources. 

Recent work on two-phase flow, not restricted 
to dynamic aspects, in Japanese universities and 
colleges is summarised in an introductory paper. One 
hundred and eighty projects are reported, excluding 
activities on boiling heat transfer, packed beds, 
bubble  columns, and gas-liquid chemical reactions. 
Thirty-seven universities and colleges have projects 
in this area. About the only topic I do not see here 
is that of two-phase flow across tube banks. Even 
the work on condensation appears confined to flow 
through tubes. Work on crossflow and many other 
topics is carried out by Japanese research organisa- 
tions, other than universities. This book would have 
been enhanced if there had been a similar article on 
work in Japanese national institutions, institutes of 
research and private companies; an authoritative 
overview of Japanese work in this area has still to 
be written. The article by Nakanishi on Recent 
Japanese Research on Two-phase Flow Instabilities 
does in fact cover the three main research sectors, 
universities, research institutes and private com- 
panies. 

The Japanese papers cover, among other 
topics, vertical bubble  flow, the entrainment 
mechanism, dynamic characteristic of stratified flow, 
pressure wave propagation in plug flow, shock 
phenomenon in bubble  and slug flow, vapour 
explosions, flow statility, and PWR reflood. 

There is much of merit in this book for anyone 
concerned with two-phase flow and heat transfer. 

D Chisholm 
Glasgow College of Technology 
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